Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Amino Acids ; 49(10): 1743-1754, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28744579

RESUMO

Recently, we cloned and characterized eleven serine and aspartate racemases (SerR and AspR, respectively) from animals. These SerRs and AspRs are not separated by their racemase functions and form a serine/aspartate racemase family cluster based on phylogenetic analysis. Moreover, we have proposed that the AspR-specific triple serine loop region at amino acid positions 150-152 may be responsible for the large AspR activity. In the present study, to test this hypothesis, we prepared and characterized fourteen mutants in this region of animal SerRs and AspRs. The large AspR activity in Acropora and Crassostrea AspR was reduced to <0.04% of wild-type after substitution of the triple serine loop region. Conversely, introducing the triple serine loop region into Acropora, Crassostrea, and Penaeus SerR drastically increased the AspR activity. Those mutants showed similar or higher substrate affinity for aspartate than serine and showed 11-683-fold higher k cat and 28-351-fold higher k cat/K m values for aspartate than serine racemization. Furthermore, we introduced serine residues in all combinations at position 150-152 in mouse SerR. These mutants revealed that a change in the enzyme function from SerR to AspR can be caused by introduction of Ser151 and Ser152, and addition of the third serine residue at position 150 further enhances the enzyme specificity for aspartate due to a decrease in the serine racemase and serine dehydratase activity. Here, we provide convincing evidence that the AspR gene has evolved from the SerR gene by acquisition of the triple serine loop region.


Assuntos
Isomerases de Aminoácido , Antozoários , Proteínas de Artrópodes , Crassostrea , Mutação de Sentido Incorreto , Penaeidae , Racemases e Epimerases , Isomerases de Aminoácido/química , Isomerases de Aminoácido/genética , Substituição de Aminoácidos , Animais , Antozoários/enzimologia , Antozoários/genética , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Crassostrea/enzimologia , Crassostrea/genética , Camundongos , Penaeidae/enzimologia , Penaeidae/genética , Estrutura Secundária de Proteína , Racemases e Epimerases/química , Racemases e Epimerases/genética
2.
Amino Acids ; 48(2): 387-402, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26352274

RESUMO

Free D-amino acids have been found in various invertebrate phyla, while amino acid racemase genes have been identified in few species. The purpose of this study is to elucidate the distribution, function, and evolution of amino acid racemases in invertebrate animals. We searched the GenBank databases, and found 11 homologous serine racemase genes from eight species in eight different invertebrate phyla. The cloned genes were identified based on their maximum activity as Acropora millepora (Cnidaria) serine racemase (SerR) and aspartate racemase (AspR), Caenorhabditis elegans (Nematoda) SerR, Capitella teleta (Annelida) SerR, Crassostrea gigas (Mollusca) SerR and AspR, Dugesia japonica (Platyhelminthes) SerR, Milnesium tardigradum (Tardigrada) SerR, Penaeus monodon (Arthropoda) SerR and AspR and Strongylocentrotus purpuratus (Echinodermata) AspR. We found that Acropora, Aplysia, Capitella, Crassostrea and Penaeus had two amino acid racemase paralogous genes and these paralogous genes have evolved independently by gene duplication at their recent ancestral species. The transcriptome analyses using available SRA data and enzyme kinetic data suggested that these paralogous genes are expressed in different tissues and have different functions in vivo. Phylogenetic analyses clearly indicated that animal SerR and AspR are not separated by their particular racemase functions and form a serine/aspartate racemase family cluster. Our results revealed that SerR and AspR are more widely distributed among invertebrates than previously known. Moreover, we propose that the triple serine loop motif at amino acid positions 150-152 may be responsible for the large aspartate racemase activity and the AspR evolution from SerR.


Assuntos
Isomerases de Aminoácido/genética , Ácido Aspártico/metabolismo , Invertebrados/enzimologia , Racemases e Epimerases/genética , Serina/metabolismo , Isomerases de Aminoácido/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Escherichia coli/genética , Invertebrados/genética , Filogenia , Fosfato de Piridoxal/metabolismo , Racemases e Epimerases/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...